A survey on recent results in Korovkin’s approximation theory in modular spaces

نویسندگان

چکیده

In this paper we give a survey about recent versions of Korovkin-type theorems for modular function spaces, class which includes $L^p$, Orlicz, Musielak-Orlicz spaces and many others. We consider various kinds convergence, using certain summability processes, like triangular matrix statistical filter convergence (which are generalizations the convergence). Finally, wwe an abstract axiomatic previous ones even almost is not generated by any filter, as show example.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Recent Progress in Approximation Theory

Because of the limitations of time, this article cannot survey the entire field of approximation theory, but instead limits itself to certain aspects of nonlinear best approximation in the real domain. A more comprehensive survey including an extensive bibliography is available from the Center for Numerical Analysis, University of Texas, Austin, Texas 78712. The nonlinear theory of best approxi...

متن کامل

SOME RESULTS ON t-BEST APPROXIMATION IN FUZZY n-NORMED SPACES

The aim of this paper is to give the set of all t -best approximations on fuzzy n-normed spaces and prove some theorems in the sense of Vaezpour and Karimi [13].    

متن کامل

Remarks on some recent M. Borcut's results in partially ordered metric spaces

In this paper, some recent results established by Marin Borcut [M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math. 28, 2 (2012), 207--214] and [M. Borcut, Tripled coincidence theorems for monotone mappings in partially ordered metric spaces, Creat. Math. Inform. 21, 2 (2012), 135--142] are generalized and improved, with much sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive mathematical analysis

سال: 2021

ISSN: ['2651-2939']

DOI: https://doi.org/10.33205/cma.804697